
 

SET THEORETIC DATA STRUCTURES 

A review paper by: 

1.Nishil Hoogar 

2.Leo Barros 

3.Varad Kelkar 

4.Vaughan D’Souza 

5.Isaiah D’costa 

6.Joshua Coutino 

7.Duane Rodrigues 

 

 

 

 

 

 

 

 

 

 

 

 



 

ABSTRACT: 

The data base literature has paid attention to Extended Set Theory as a 

data base management discipline. Set Theoretic Information Systems 

Corporation has been selling a database system based on Extended Set 

Theory for some time. Set Theoretic Data Structures is the name of this 

system (STDS). STDS is similar to relational algebraic data base 

management systems, as demonstrated by a series of examples. The 

benefits of STDS include its simple data base architecture, compact data 

representation, and flexible, powerful data manipulation operators; 

nevertheless, the low-level basic user interface and incomplete 

implementation of Extended Set Theoretic principles are its drawbacks. A 

"user-friendly" interface and certain specific extended Set Theory 

capabilities should be created to make STDS particularly appealing. 

Keywords: Union, intersection, symmetric difference, domain, range, 

image, cardinality, converse image, concurrence, domain, range, set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1.INTRODUCTION: 

The ultimate purpose of this project, of which this work is a part, is to 

create a machine-independent data structure that allows for quick 

processing of data linked by arbitrary relationships such as: such as: the 

contents of a telephone book, library files, census reports, family lineage, 

graphic displays, information retrieval systems, networks, etc. Non-

intrinsically connected data must be expressed (stored) in such a way 

that the relationship between them can be defined before any data 

structure can be applied. A set-theoretic data structure looks to be worth 

investigating since each relation can be described in set theory as a set of 

ordered pairs, and set theory provides a richness of operations for dealing 

with relations. 

A Set-Theoretic Data Structure (STDS) is any storage representation of 

sets and set operations that is isomorphic to η with S, given any family of 

sets t and any collection S of set operations. Any set-theoretic statement 

capable of being constructed from η and S may be used with an STDS. 

Every stored representation of a set must keep all of the set's properties, 

and every representation of a certain set must behave identically while 

performing set operations. 

General storage representation 

An STDS is made up of five structurally distinct components: 

1. A collection of set operations S. 

2. Asset of datum names β. 

3. The data: a collection of datum definitions, one for each datum name. 

4. A collection of set names η. 

5. A collection of set representations, each with a name in η. 

The set operations must be executed early in order for an STDS to be 

effective. If any two sets can be well ordered (a linear order with a first 

element) and their union preserves this well ordering, then the set 

operations subroutines are simply a type of merge or, at worst, a binary 

search of just one of the sets. Another paper showed that any set defined 

over η may be ranked in this way. Sets are represented by contiguous 

storage locations in blocks, with t containing the names of all the sets. 

The set 0 is a contiguous block of storage locations that contains all 



 

datum names; the address of a location in the β-block is a datum name 

and an element of β (as shown in Fig 1). The address of a stored 

description of that datum is the content of a location in the β-block. The 

only pointers required for the execution of an STDS are the contents of 

the β-block and the η-block. Individual set storage representations do not 

carry pointers to other sets, but they do store information on datum 

names. Because each set representation is associated with only one 

pointer, it can be relocated throughout storage without affecting its 

contents or the contents of any other set representations—only the one 

pointer in η is affected. It's a simple task to maintain set representations 

current. The last element in the set is used to replace elements that are 

to be deleted. 

As space allows, elements to be added are added to the end of the set 

representation. When contiguous locations become unavailable, a new set 

is created, and the element in η that previously referenced the set now 

references a location that signals that the set is now the union of two set 

representations. (In a paging structure such sets could be kept on the 

same page.) In the case of η, there are two types of sets: generator sets 

and composite sets. The composite sets are unions of generator sets, and 

the generator sets are mutually disjoint. Only the generator sets have 

storage representations. An STDS is intrinsically a minimal storage 

representation for arbitrarily connected data since no duplication of set 

storage is required and set representations are maintained to a minimum 

by having only the components of the sets and no pointers. 

  

2.OPERATIONS OF AN STDS 

 

Operation on an STDS can be done by means of set operations often 

encompassed in a subroutine (sequence of program instructions that 

performs a specific task). This set operation accesses the required sets 

through pointers. It should be stressed that no pointers exist between 

sets, hence the set operations act as the only structural ties between 

sets. 

The STDS package itself consists of these set operations that we can 

readily use. The operations that manipulate these sets can be categorised 

as follows: 

1. I/0 operations 



 

2. Set operations 

3. Arithmetic operations 

4. Utility functions 

Given below are examples of some functions that are available in the 

STDS package. 

 

 

 

A few commonly used STDS functions have been illustrated below with an 

example of a database that stores a list of the Presidents of the United 

States. 

2.1 GET and PUT - Retrieve Sets from Archival Storage (i.e., archive sets)  

The GET operation retrieves an already stored set (table) from secondary 

storage. The set (table) must have previously been stored by a PUT 

operation. The PUT operation stores a set on secondary storage (hard 

drive). 



 

  

  

  

2.2 UN - Produce the Union of Two Sets Given two sets 

 A resultant set is constructed that contains each row belonging to either 

input set. The resultant set does not contain duplicates. 

 

 

 

2.3 XPAN8 - Expand to Sets (JOIN) 

XPAN8 compares the first domains of two inputs, and where a match 

occurs, constructs a resultant set containing the concatenation of the data 

fields from the two input sets: 



 

 
It is to be noted that these operations are performed rapidly, thereby 

providing increased read and write speed of the data structure. 

 

 

3. BLOCK DETAILS: 

 

 3.1 Ꞵ-block: 

 

The Ꞵ-block is a section of contiguous storage locations with Ꞵo as the 

address of the head location. The first location containing a datum-pointer 

has the address Ꞵo+1, and the location of the i-th datum-pointer is Ꞵo+i. 

Let #Ꞵ be representing the total number of datum-pointers, then the last 

address of the Ꞵ-block would be Ꞵo+#Ꞵ. Since all datum-pointers are 

located between Ꞵo+1 and Ꞵo+#Ꞵ, let Ꞵ be set of integers {1,2,3,...,#Ꞵ}. 

Therefore any integer i such that 1<=i<=#Ꞵ is the datum-name for the i-

th datum-pointer. The i-th datum-pointer locates a block of storage 

containing a description of the i-th datum and all the generator set names 

for which the i-th datum-name is constituent 

 

 3.2 η-block: 

 

The η-block is similar to Ꞵ-block with ηo and #η as the address of the 

head location and cardinality respectively. The contents of the η-block are 

pointers. These pointers are of two types and are distinguished by an 

integer η* such that 1<η*<=#η. For all 1<=i<η*, i is the name of a 

generator set, and for all η*<=i<=#η, i is a composite set. A generator 

set has a set representation while a composite set does not since it is the 

union of some generator sets. For i>=η* the pointer-in ηo+i locates a 

section of storage containing names of generator sets. For i<η* the 

pointer in ηo+i locates a section of storage containing all composite set 

names that use i, and a pointer to the set representation of i. Since all 

generator ste sare mutually disjoint and since only generator sets have a 

storage representation, there is no duplication of storage in an STDS. 



 

 

 

 

 

 

 

 
Figure 1:Block Representation 

 

 

Ω(l) through Ω(ŋ*-l) are sets of pointers which point back to composite 

sets in η-block, while, Ω(ŋ*) through Ω(#ŋ) are sets of pointers which 

point to generator sets in η-block. 𝛤(i) are sets of pointers to generator 

sets in η-block 

 

η-block is made up of generator sets [1<=i<η*] and composite sets 

[η*<=i<=#η]. Generator sets having set operations(S), while composite 

sets being the union of some generator sets 

Set operations has pointers pointing to the datum names Ꞵ. These datum 

names, a part of Ꞵ-block points to datum description 𝛤(i). Where 𝛤(i) are 

sets of pointers to generator sets in η-block 

               

4.SET REPRESENTATION 

The Sets involved in set operations are isomorphic and have a unique 

linear representation of their elements in order to ensure faster execution 

speeds. Isomorphic Sets: a one-to-one mapping between two sets that 

preserves relationships between elements of the sets Example::   

 (1,2)<---->(1)                       (2)   



 

To Ensure efficient operation of an STDS: 1. The elements have some 

predefined well-ordering relation, such that independently of how the set 

is presented to a machine, the ordering of its elements will always be the 

same. 2.This ordering should be preserved under a union. As the Set 

Representatives are isomorphic,every set representation will reflect the 

rank of set and preserve the order of the set.       

         Let A = <a,b,c>, B 

= {a, b,c}, and C = {c,b,a} From above, we analyse that Sets B and C 

have the same set representation while A is different.Hence we can 

conclude saying that B and C are the correct way of representing Sets.  

 

5. COMPLEXES AND N-TUPLES 

 

5.1 Complexity in set theory 

 

What is complexity? 

In its most general form, the notion of complexity seems to be 

identifiable with that of a pre order (a reflexive, transitive relation): 

A ≤ B 

Means: A is at most as complex as B (whatever A and B are) 

 

The point is to identify a good way of comparing A and B, in order to 

state that A ≤ B 

 

 

5.2 n-tuples in set theory 

 

Extended Set Theory was developed by David L. Childs with support from 

the CONCOMP project at the University of Michigan.Childs realised that 

computer data structures did not have a rigorous mathematical 

formulation, and began to develop a definition that would ultimately lead 

to practical results when applied to the computer environment. 

 

To achieve a mathematical definition of computer data structures, 

In particular those used in databases, Childs investigated classical set 

theory. 

 

The choice of classical set theory was a natural first step, because a 

database record might be viewed as an n-tuple where each field in the 



 

record represents a domain of the n-tuple. However, classical set theory 

has some definite shortcomings when applied to records and databases. 

These problems arise because of the definition of the n-tuple. 

 

In mathematics, a tuple is a finite ordered list (sequence) of elements. An 

n-tuple is a sequence (or ordered list) of n elements, where n is a non-

negative integer. There is only one 0-tuple, referred to as the empty 

tuple. An n-tuple is defined using the construction of an ordered pair. 

 

A standard classical set theoretic definition of the ordered pair 

(2-tuple) is: 

 

<x , y> = {{x}, {x, y}}        

 

This definition is extended to n-tuples in a straightforward manner: 

 <x,y,z>   =   {{x}, {x,y} , {x,y,z}....} 

When this definition is applied 'to computer data structures, this definition 

quickly breaks down: 

 

<1,0,1>={{1},{1,0},{1,0,1}}={{1},{1,0}}=<1,0> 

 

Certain obvious classical set theoretic operations on n-tuples are 

undefined, largely because of the definition of the n-tuple.  

 

To achieve a better foundation for computer data structures, Childs 

developed a new definition of a set. The set E is defined as: where aj is an 

atom of a set and ij is a position indicator. 

 

S={        i1,i2,i3…..in  

          a1,a2,a3….an     } 

 

 

 

 Note than an n-tuple is now just a special case of a set: 

 

  <1,0,1,2>={11,02,13,24} 

 

 

The advantages of the definition of the set: 

1.There is no problem distinguishing between like elements with 



 

different positions. 

2. n-tuples need not be considered specially; n-tuples are special 

cases of sets. 

3. All classical set operations may be defined on these sets. 

4. New operations on these sets may be defined. 

 

 

6. 

 
 

These findings provide a theoretical basis for the following equivalent 

notations: 

 

Since for all a,{a1 } = {a}, the exponent '1 ' is optional. It is important to 

note that the sign 'x*' has no meaning except to be enclosed by set 



 

brackets. If A={a6,b8 },then aє6A and bє8A are true, but a6єA is 

meaningless. Refer to figure 2 for more examples. 

 

 

 

 7.CONCLUSION                                                                    

 

STDS provides a user with a very flexible and extremely powerful tool 

with which complex manipulation of data can be performed rapidly. 

 

STDS-I:does not provide the user with a sufficiently"user-friendly" 

interface to allow easy work with a data base. 

Reason:Because of its low-level nature 

 

STDS-OS:User Friendly But currently has insufficient power to handle 

relationships between sets. 

 

Features to be incorporated: 

1. A "user-friendly" interface be developed 

2. Distinctive features of the Extended Set Theory be implemented. 

 

It is a system that appears to be of interest of relational database 

management systems that could possibly provide a more efficient means 

of implementing a relational system 
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